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Abstract

A key step in pharmacogenomic studies is the development of accurate prediction models for drug 

response based on individuals’ genomic information. Recent interest has centered on 

semiparametric models based on kernel machine regression, which can flexibly model the 

complex relationships between gene expression and drug response. However, performance suffers 

if irrelevant covariates are unknowingly included when training the model. We propose a new 

semiparametric regression procedure, based on a novel penalized garrotized kernel machine 

(PGKM), which can better adapt to the presence of irrelevant covariates while still allowing for a 

complex nonlinear model and gene-gene interactions. We study the performance of our approach 

in simulations and in a pharmacogenomic study of the renal carcinoma drug temsirolimus. Our 

method predicts plasma concentration of temsirolimus as well as standard kernel machine 

regression when no irrelevant covariates are included in training, but has much higher prediction 

accuracy when the truly important covariates are not known in advance. Supplemental materials, 

including R code used in this manuscript, are available online.
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1. INTRODUCTION

Pharmacogenomics studies the role of genomics in drug response by correlating gene 

expression with drug absorption, distribution, metabolism and elimination. An important 

problem is to develop accurate drug response prediction models using individuals’ genomic, 

clinical and demographic information, as well as statistical learning methods for 

investigating the biological mechanisms underlying the outcome. The investigation that 

motivated our present work was a study of the anticancer agent temsirolimus (CCI-779), 

which targets renal cell carcinoma. Our goal is to predict, using an individual’s gene 

expression levels, the expected concentration of temsirolimus in the patient’s blood plasma. 

Plasma concentrations reflect the amount of the drug absorbed by the body, so accurate 

predictions can allow us to identify the patients for whom temsirolimus would be most 

efficacious.

Standard methods for predictive modeling usually posit a model for the outcome that is 

linear in the predictors. However, because the relationship between genes and drug plasma 

concentration may be very complex, e.g., due to gene-gene interactions, linear models may 

not suffice. Xue et al. [16] proposed a penalized regression method allowing for some 

nonlinearity, but required that the nonlinearity take the form of a generalized additive 

models, which is still restrictive. Allen [1] proposed the fully nonparametric KNIFE method 

to achieve feature selection using linearized weighted kernel. He et al. [9] extended the 

KNIFE procedure to a semiparametric setting. Alternatively, Liu et al. [11] proposed a least-

squares kernel machine (LSKM) method based on semiparametric support-vector machine 

regression, which can allow for flexible modeling of the role of gene expression values, in 

addition to controlling for clinical and demographic covariates. However, these methods 

become inaccurate if the models contain many irrelevant predictors, so methods are needed 

to select predictors while still allowing for complicated nonlinear effects in semiparametric 

model.

There are few solutions that can maintain the flexibility of the LSKM while ameliorating the 

impact of the irrelevant predictors. Popular variable selection methods like the LASSO [14] 

and SCAD [6] cannot be applied here because they are designed for parametric, and usually 

linear, models. One possible approach was recently proposed by Maity and Lin [12], which 

can test whether a single predictor in a LSKM is associated with the outcome in the presence 

of the other predictors, while allowing for a nonlinear model. Predictors that are not 

significantly related can be removed from the model, reducing the dimension. Though 

sensible, this approach is akin to backwards selection and is not an efficient way of model-

building.

We propose a new kernel machine regression approach using a “garrotized” kernel, which 

generalizes the idea of Maity and Lin [12]. Our method allows for gene-gene interactions 
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and other complex relationships between the gene expression values and the plasma 

concentration of temsirolimus.

2. METHODS

2.1 Least-squares kernel machine (LSKM) regression

For subjects i = 1, …, n, let Yi be the plasma concentration of temsirolimus, Xi = (Xi1, …, 

XiP)T be a set of clinical and demographic covariates such as age, and Zi = (Zi1, …, ZiQ)T be 

expression levels associated with Q genes. These genes may constitute a gene set, e.g., a 

genetic pathway/network. We assume the following partial linear semiparametric model to 

relate the response Y to the covariates:

Y = Xβ + h(Z) + ε, (1)

where Y = (Y1, …, Yn)T is the n × 1 vector of response variables, X = (X1, …, Xn)T is the n 
× P non-genomic covariate matrix, Z = (Z1, …, Zn)T is the n × Q gene expression matrix, 

and ε = (ε1, …, εn)T is an n × 1 random error vector with independent components where εi 

~ N(0, σ2). The regression parameter vector β quantifies the effect of the non-genomic 

covariates on the outcome, and h(·) is an unknown and possibly complicated function that 

describes the relationship between genes and the plasma drug concentration. This flexibility 

is desirable because the true relationship between genes and the outcome is likely very 

complex.

It is common to assume h(·) lies in a reproducing kernel Hilbert space ℋK generated by 

some positive definite kernel function K(·, ·). According to the Mercer’s theorem [4], under 

some regularity conditions the kernel function K(·, ·) implicitly specifies a unique function 

space ℋK, which is spanned by a particular set of orthogonal basis functions φj(Z), j = 1, …, 

J with J possibly being infinity. The mathematical properties of ℋK imply that any function 

h(·) ∈ ℋK can be represented using a set of basis function as h(z) = ∑ j = 1
J ϕ j(z)η j for some 

coefficients ηj, which is called the primal or basis representation of the function; or as 

h(z) = ∑m = 1
M K(zm

∗ , z; ρ)αm, a linear combination of the given kernel function K(·, ·) evaluated 

at points {z1
∗, …, zM

∗ } ∈ RQ, for some integer M and some constants αm, which is called the 

dual representation.

The space ℋK can be implicitly defined by choosing a kernel function. A commonly used 

one is the Gaussian kernel: K(z1, z2) = exp{ − ∑q = 1
Q (z1q − z2q)2/ρ}, where ρ is a tuning 

parameter. The Gaussian kernel generates the function space spanned by the radial basis 

functions [3], which contains many nonlinear functions and allows for gene-gene 

interactions. There are also other choices of kernel functions including the dth polynomial, 

neural network, sigmoid and smoothing spline kernels [13]. The choice of the kernel 

function thus determines the particular functional space in which the unknown function h(·) 

is assumed to lie.
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Model (1) is the least-squares kernel machine (LSKM) regression model of Liu et al. [11]. It 

parametrically specifies the effects of the Xi and nonparametrically specifies the effects of Zi 

using a unified kernel machine framework [13]. It is simple to fit and closely related to 

classical linear mixed models [11].

2.2 Garrotized kernel machines

LSKMs become less accurate when Zi contain more irrelevant genes. This is true of any 

nonparametric method as the dimension increases, and in the case of LSKM is illustrated in 

our simulations in Table 1. Here we propose a new “garrotized” kernel that can 

automatically eliminate irrelevant genes from the model. Given a base kernel K(·, ·), our 

garrotized version K(g) is defined by

K(g)(Zi, Z j; δ) = K(Zi
∗, Z j

∗),

Zu
∗ = (δ1

1/2Zu1, …, δQ
1/2ZuQ)T, u = i, j, (2)

δq ≥ 0, q = 1, …, Q .

For example, the garrotized version of the Gaussian kernel is 

K(g)(Zi, Z j; δ) = exp{ − ∑q = 1
Q δq(Ziq − Z jq)2}. Our family of garrotized kernels includes the 

kernel of Maity and Lin [12] as a special case.

The δ are unknown and will be estimated from the data. Each δq modulates the effect of 

gene Zq on drug response. For example, δq = 0 implies that Zq is not predictive of the 

response. Thus, our garrotized kernel formulation provides a flexible way to select variables 

in a semi-parametric setting, and compared to the LSKM may be better adapt to the presence 

of irrelevant genes in Z. The function h(·) can still be very complicated, for example 

allowing for gene-gene interactions, depending on the chosen base kernel K(·, ·). The δq are 

similar to the regression coefficients in a linear model, except that our model does not need 

to be linear in Zq.

To estimate the parameters of model (1) with our garrotized kernel (2), we first standardize 

the non-genomic covariates and each of the gene expression levels to have zero mean and 

unit variance and then solve the following minimization problem:

arg min
α, β, δ

1
2n ∑

i = 1

n
(Y i − Xi

Tβ − h(Zi))
2 + λ1 ∑

p = 1

P
| βp | + λ2 ∑

q = 1

Q
δq + 1

2λ3‖h‖ℋK
2 , (3)

where λ1 and λ2 are nonnegative regularization parameters, λ3 is a tuning parameter which 

controls the trade-off between goodness of fit and complexity of the model, and ‖h‖ℋK 
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denotes the functional norm in the space ℋK generated by the garrotized kernel. The penalty 

functions involving β and δ are inspired by the LASSO penalty function, and are appropriate 

under the assumption that only a small number of the P non-genomic covariates and the Q 
genes are actually associated with the response. The penalty function involving h(·) is 

standard in the estimation of kernel machine regression models [11, 13].

The representer theorem of Kimeldorf and Wahba [10] allows us to convert (3) into a more 

manageable optimization problem. The theorem states that the solution can be written as

h(Z) = ∑
j = 1

n
α jK

(g)(Z, Z j; δ),

where α = (α1, …, αn)T is an unknown vector and the K(g)(·, ·) is our garrotized kernel. 

Minimization of (3) is thus equivalent to minimizing

f (α, β, δ) = 1
2n‖Y − Xβ − K(δ)α‖2

2 + λ1 ∑
p = 1

P
| βp | + λ2 ∑

q = 1

Q
δq + 1

2λ3αTK(δ)α, (4)

where K(δ) is an n × n matrix, called the Gram matrix, with ij-th element given by Kij(δ) = 

K(Zi, Zj; δ). We refer to the solution of (4) as our penalized garrotized kernel machine 

(PGKM) estimate.

Indeed, our method stands out from the competing methods, in particular, KNIFE [1] and He 

et al.’s methods [9] in the following aspects. First, our method deals with partial linear 

models and our framework is general, encompassing the models considered by KNIFE (fully 

nonparametric models) as special cases. Second, our proposed PGKM approach is flexible 

and enables identification of important covariates regardless of whether they are 

parametrically or nonparametrically modeled. In contrast, neither KNIFE nor He et al.’s 

method can select both types of variables. Our numerical studies suggest the utility of our 

proposal in selecting important variables even with moderate sample sizes. Finally, of a 

technical note, KNIFE and the method of He et al. are based on linear approximations to the 

kernel, while our PGKM method directly uses the original nonlinear garrotized kernel which 

is more powerful and robust indicated by simulations in Section 3.

2.3 Algorithm

We propose solving (4) for the unknown parameters α, β, δ by using a “one-group-at-a-

time” cyclical coordinate descent algorithm, which is computed along a regularization path.

1. Set initial estimates αini, βini, δini. For example, take the ordinary least square 

estimates for β and let αini = 0.1, δini = 0.1.

2. Update α, β, δ cyclically. Specifically,

– Fix α, δ at values α̃, δ̃ and write (4) as
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f (α∼, β, δ
∼) = 1

2n‖Y − Xβ − K(δ
∼)α∼)‖2

2 + λ1 ∑
p = 1

P
| βp | + λ2 ∑

q = 1

Q
δ
∼

q + 1
2λ3α∼TK(δ

∼)α∼ .

The β can be estimated using standard procedures for computing 

LASSO regression estimates [8, 7], giving an update β̃.

– Holding the values of β, δ fixed at β̃, δ̃, our optimization problem (4) 

can be written as

f (α, β
∼, δ

∼) = 1
2n‖Y − X β

∼ − K(δ
∼)α‖2

2 + λ1 ∑
p = 1

P
| β
∼

p | + λ2 ∑
q = 1

Q
δ
∼

q + 1
2λ3αTK(δ

∼)α,

which is a quadratic form in α. Differentiating the right side of the 

above equation with respect to α and letting it equal 0, we find that the 

update for α is the solution to

1
nKT(δ

∼)K(δ
∼) + λ3K(δ

∼) α = 1
nKT(δ

∼)(Y − X β
∼),

which is straightforward to obtain. If the left-hand side of the previous 

equation is a singular matrix, a diagonal matrix with small entries can 

be added to stabilize the estimate.

– Given the estimates of α, β, updating δ is equivalent to solve a 

nonlinear optimization problem under the constraints δq ≥ 0, q = 1, …, 

Q. The δq can be updated one at a time. For δt, t = 1, …, Q, given the 

estimates of α, β, (4) can be expressed as

f (α∼, β
∼, δ) = 1

2n‖Y − X β
∼ − K(δ)α∼‖2

2 + λ1 ∑
p = 1

P
| β
∼

p | + λ2 ∑
q ≠ 1

Q
δq + λ2δt + 1

2λ3α∼TK(δ

)α∼,

where the δq for q ≠ t are held fixed at values δ̃q(λ). The update for δt 

can be derived using standard univariate nonlinear constrained 

optimization software.

3. Repeat Step (2) until the change in the objective function after any coefficient 

update is less than a threshold, say 1E-5, or the number of iteration reaches a 

prespecified number.

Cross-validation is often used for tuning parameter selection but can be computationally 

inconvenient. Instead, we divide a given dataset into a training set and a validation set. We 

use the training set to fit models using various prespecified values for λ = (λ1, λ2, λ3). The 

solutions are computed for a decreasing sequence of values for λ. This scheme not only 
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gives us a path of solutions, but also exploits warm starts and leads to a more stable and 

faster algorithm. We next calculate the prediction error of each fitted model using the 

validation set. We used the mean squared prediction error (MSPE), defined as

MSPE = 1
n ∑

i = 1

n
(Y i − Xiβ − h(Zi))

2 . (5)

Finally, we choose the estimated model that gives the lowest MSPE on the validation set. In 

practice we first perform a coarse search through a large range of λ in order to find a 

reasonable values before conducting a finer localized search.

3. SIMULATION

3.1 Comparison with LSKM

We first compare our proposed PGKM method to that of the LSKM method of Liu et al. 

[11]. We generate continuous responses Yi from

Y i = Xiβ + h(Zi) + εi, i = 1, …, n . (6)

We independently generate the P covariates Xip from U(−1, 1) and the Q covariates Ziq from 

U(0, 1). The random errors εi follow N(0, σ2), with σ equal to either 0.1, 0.5, or 1. We allow 

the nonparametric function h(·) to have a complex form with nonlinear functions of the Z’s 

and interactions among the Z’s in order to mimic the complex relationships between gene 

expression values and the plasma concentration of temsirolimus.

We consider four configurations by varying the sample size n, the number of predictors and 

the number of irrelevant predictors included when training the model.

Setting 1: n = 60, P = 1, Q = 5, β = 1, 

h(Z) = cos(Z1) − 1.5Z2
2 + exp( − Z3)Z4 − 0.8 sin(Z5) cos(Z3) + 2Z1Z5. Model (6) is fit 

without any additional irrelevant predictors.

Setting 2: n = 100, P = 2, Q = 15, β = (1, 0)T, h(·) is the same as in setting 1. Model 

(6) is fit with 1 additional irrelevant X predictor and 10 additional irrelevant Z 
predictors.

Setting 3: n = 200, P = 1, β = 1, Q = 10, 

h(Z) = cos(Z1) − 1.5Z2
2 + exp( − Z3)Z4 − 0.8 sin(Z5) cos(Z3) + 2Z1Z5 + 0.9Z6 sin(Z7)

− 0.8 cos(Z6)Z7 + 2Z8 sin(Z9) sin(Z10) − 1.5Z8
3 − Z8Z9 − 0.1 exp(Z10) cos(Z10)

. 

Model (6) is fit without any additional irrelevant predictors.

Setting 4: n = 200, P = 2, β = (1, 0)T, Q = 30, h(·) is the same as setting 3. Model (6) 

is fit with 1 additional irrelevant X predictor and 20 additional irrelevant Z predictors.
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For each simulation setting we generate training, validation, and testing datasets of n 
observations, each according to model (6). We then use the training and validation sets to fit 

the model using either LSKM with the Gaussian kernel, or our proposed PGKM with our 

garrotized Gaussian kernel. We perform 500 replications for each setting.

Table 1 reports the average mean squared prediction errors of PGKM and LSKM in each 

setting. In settings 1 and 3, the average MSPE obtained by the PGKM method is very close 

to that obtained by LSKM method for every configuration of h(·) and σ. In other words, our 

proposed PGKM method has very similar prediction performance compared to the LSKM 

method when used without any irrelevant variables. The proposed PGKM method in fact 

incurs a slightly smaller average MSPEs than LSKM for different underlying nonparametric 

functions and levels of variation. This may be because our modified garrote kernel is more 

flexible than the base Gaussian kernel as a result of allowing all δq to be unequal.

In contrast, in settings 2 and 4, our proposed PGKM always yields much smaller average 

MSPEs than LSKM. That is mainly because the proposed PGKM method can recognize the 

irrelevant variables by estimating the corresponding δq and βp to be small. This dramatically 

improves prediction accuracy. Again, the MSPEs calculated by PGKM are less variable than 

those calculated using LSKM. Furthermore, the PGKM prediction errors with irrelevant 

variables are very close to the LSKM results using only the relevant variables. Thus the 

proposed PGKM method can perform nearly as well as if we knew the true set of relevant 

variables.

One byproduct of our proposed PGKM method is that while estimating the parameters of 

model (6), it can simultaneously select variables while still allowing for a complicated 

nonlinear regression model. When the garrote parameters δq is estimated as zero, we can 

conclude that the corresponding covariate Zq is not related to the response. In practice, we 

use 10−5 as the threshold to decide whether δq is estimated as zero. A similar thresholding 

principle is used in the SCAD procedure of Fan and Li [6]. At the same time, our algorithm 

can estimate components of β to be exactly zero, which effects variable selection among the 

covariates X.

We report the variable selection performance of PGKM on simulation settings 2 and 4 in 

Table 2. The results show that nearly all relevant X and Z covariates can be selected by 

PGKM with fairly high probability. This is reflected in the low under-selection rates given in 

Table 2. PGKM can achieve reasonable variable selection without requiring a linear model, 

and to our knowledge there are few other methods that can accomplish this.

3.2 Comparison with He’s method

We next compare the performance of our PGKM method to that of the method of He et al. 

[9] based on Gaussian kernel. We generate data as in Section 3.1 and consider the following 

simulation settings. As before, we preform 500 replications of each setting.

Setting 1: n = 100, P = 1, Q = 15, β = 1, h(·) as in setting 1 of Section 3.1. Model (6) 

is fit with 10 additional irrelevant Z predictors.
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Setting 2: n = 100, P = 2, Q = 15, β = (1, 0)T, h(·) as in setting 1 of Section 3.1. 

Model (6) is fit with 1 additional irrelevant X predictor and 10 additional irrelevant Z 
predictors.

Table 3 reports the results. The method He et al. [9] assumes that the X covariates contain no 

irrelevant variables, but setting 1 shows that even when this holds, the average MSPEs of the 

PGKM method are much smaller and less variable compared to those achieved by He’s 

method. This may be because He et al. [9] use linear approximations to the complex 

nonlinear kernel, whereas PGKM does not use approximations. Furthermore, when X 
contains some irrelevant covariates, setting 2 shows that our PGKM again yields much 

smaller average MSPEs than He’s method.

Table 3 also provides the average running times of PGKM and He’s methods. PGKMis 

tuned over (λ1, λ2, λ3) on a grid of triplets while He’s method is tuned over λ2 on a grid of 

scalars. PGKM is considerably faster.

The variable selection results of PGKM and He’s method in setting 2 are reported in Table 4. 

He’s method always underselects much more frequently than PGKM, which may be one 

reason for its poorer predictive performance in Table 3. Furthermore, unlike He’s method, 

PGKM is capable of variable selection among the X covariates, which it does quite 

successfully.

3.3 Comparison with KNIFE

In this section, we compare the proposed PGKM method with the KNIFE of Allen [1] based 

on Gaussian kernel. Because PGKM is designed for semiparametric models while the 

KNIFE is designed for fully nonparametric models, for a fair comparison we conduct the 

following simulation, using data generated from setting 2 in Section 3.1.

1. Fit a semiparametric model using the PGKM method.

2. Fit a nonparametric model using the KNIFE method directly.

3. Use the KNIFE method fitted to the residuals of a penalized linear regression of 

Y on X. We refer to this two-step method as “Linear-KNIFE”. We use a LASSO 

penalty to realize variable selection in the X covariates.

Table 5 shows that our proposed PGKM method always yields much smaller average 

prediction errors than KNIFE. This may be because the proposed PGKM method correctly 

specifies a partially linear model, while the fully nonparametric model of KNIFE is much 

more difficult to estimate. In order to eliminate the influence of model misspecification, we 

compare the prediction accuracy of PGKM to that of Linear-KNIFE. The average MSPE of 

PGKM is still much smaller than that of Linear-KNIFE. This may be due to the fact that 

PGKM directly uses the garrotized Gaussian kernel whereas both KNIFE procedures use 

linear approximations.

Table 5 also provides the average running times of PGKM and KNIFE methods. The results 

reveal that the running times of PGKM are comparable with those of KNIFE.
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The variable selection results for PGKM, KNIFE and Linear-KNIFE methods are reported in 

Table 6. The percentage of under-selection of irrelevant X and Z covariates based on KNIFE 

is much larger than that based on our PGKM, which may be due to model misspecification. 

The performance of selecting nonparametric Z covariates of PGKM are very similar to those 

based on Linear-KNIFE. Furthermore, our PGKM does a much better job of selecting the 

parametric X covariates than Linear-KNIFE.

4. ANALYSIS OF THE PHARMACOKINETICS OF TEMSIROLIMUS

We apply the proposed PGKM method to clinical pharmacokinetics data on temsirolimus 

(CCI-779) from renal cell carcinoma subjects collected by Boni et al. [2]. The data are 

publicly online. Temsirolimus is an intravenous anticancer agent and has demonstrated 

inhibitory effects on tumor growth. Renal cell carcinoma subjects received weekly 

treatments of temsirolimus until they demonstrated evidence of disease progression. We 

have expression data on 12,626 genes from 39 subjects measured at baseline, as well as 

plasma drug concentration across time and each subject was measured 1 to 4 times. A total 

of 58 observations were made. The concentration measurements were summarized using the 

area under the curve (AUC), a standard pharmacokinetic measure of the body’s exposure to 

a drug. Our goal is to construct a predictive model for the expected CCI-779 cumulative 

AUC in terms of an individual’s gene expression measurements. An accurate model can 

allow us to identify patients for whom a given dosage level of temsirolimus would be most 

effective.

To improve the accuracy of our predictions we first perform dimension reduction using the 

nonparametric independence screening method proposed by Fan and Song [5], which leaves 

14 genes remaining. We then apply our proposed PGKM method. For comparison we also 

apply the LSKM method and the LASSO for linear regression [14] using the same 14 genes.

In order to compare the prediction errors of these three methods, we randomly selected 40 

observations for estimation, 9 observations for searching for the best estimated model of 

each method and the remaining 9 observations for prediction. We calculated the average 

MSPE of each method over 1000 replications. Table 7 reports the averaged MSPEs and 

shows that our PGKM is by far the most predictively accurate. Its superior performance 

compared to LASSO suggests that the standard linear model is not sufficient to explain the 

highly nonlinear and complex relationship between the genes and the drug plasma 

concentration. Its superior performance compared to LSKM demonstrates the benefits of our 

new garrotized kernel.

5. CONCLUSION

We have proposed a flexible variable selection procedure for semiparametric regression 

based on a new class of garrotized kernels. It can capture complicated relationships between 

predictors and outcome and possesses more predictive power than the existing methods in 

the presence of irrelevant predictors. A key advantage of the proposed PGKM method is that 

it can achieve variable selection while allowing for a complex nonlinear model. Simulations 
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and our analysis of the plasma concentration of the anticancer drug temsirolimus 

demonstrate the advantages of our method compared to competing approaches.

In this article we considered only continuous outcomes using a Gaussian base kernel. 

However, our garrotized kernel machine framework can be extended to estimation and 

variable selection for a much larger class of models and a much wider range of base kernels. 

We are pursuing extensions into generalized semiparametric models, for example logistic 

regression and exponential class models, and other kernels, such as the identity-by-state 

kernel popular in genome-wide association studies [15]. We are also planning to extend the 

results to accommodate correlated data. The results will be reported elsewhere.

Finally, we have so far only studied situations where the number of covariates is smaller than 

the sample size. In principle, our framework can also be used in the high-dimensional setting 

where there are more covariates than observations. In practice this requires overcoming 

significant computational hurdles, and we are currently investigating more efficient 

algorithms for fitting our PGKM estimate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Prediction errors of PGKM and LSKM. The last two columns provide the average MSPEs over 500 

replications, with standard deviations in parentheses

PGKM LSKM

Setting 1

σ = 0.1 0.0345 (0.0160) 0.0379 (0.0121)

σ = 0.5 0.0778 (0.0280) 0.0797 (0.0399)

σ = 1.0 0.1617 (0.0903) 0.1639 (0.0739)

Setting 2

σ = 0.1 0.0430 (0.0133) 0.0928 (0.0487)

σ = 0.5 0.0693 (0.0196) 0.1398 (0.0609)

σ = 1.0 0.1746 (0.0525) 0.2369 (0.0513)

Setting 3

σ = 0.1 0.0689 (0.0165) 0.0790 (0.0166)

σ = 0.5 0.1015 (0.0189) 0.1045 (0.0182)

σ = 1.0 0.1608 (0.0319) 0.1708 (0.0320)

Setting 4

σ = 0.1 0.0748 (0.0146) 0.1622 (0.0264)

σ = 0.5 0.1204 (0.0251) 0.2174 (0.0348)

σ = 1.0 0.2403 (0.0448) 0.3319 (0.0587)
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Table 3

Prediction errors and running times of PGKM and He’s method. The second and fourth columns provide the 

average MSPEs over 500 replications, with standard deviations in parentheses. The third and fifth columns 

provide the average running times in seconds

PGKM He’s Method

Setting 1

σ = 0.1 0.0308 (0.0099) 50 0.3742 (0.2642) 560

σ = 0.5 0.0849 (0.0333) 79 0.7873 (0.7808) 566

σ = 1.0 0.1732 (0.0585) 88 1.4956 (1.4561) 398

Setting 2

σ = 0.1 0.0430 (0.0133) 25 0.4540 (0.3820) 2764

σ = 0.5 0.0693 (0.0196) 41 0.7814 (0.6853) 1269

σ = 1.0 0.1746 (0.0525) 30 1.9578 (1.9320) 525
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Table 7

Average prediction error of each method for 1000 replications, with standard deviations in parentheses

Methods MSPE (SD)

PGKM 0.4120 (0.2077)

LSKM 0.5842 (0.3537)

LASSO 2.0343 (1.1360)
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